

A334026


Primes p such that 2*p and 4*p are 1 away from a prime.


2



2, 3, 5, 7, 11, 37, 41, 53, 79, 83, 97, 131, 139, 173, 199, 281, 293, 307, 431, 499, 577, 593, 619, 683, 727, 743, 911, 997, 1013, 1297, 1429, 1481, 1511, 1811, 1901, 1931, 2003, 2029, 2141, 2273, 2351, 2693, 3037, 3067, 3109, 3491, 3499, 3739, 3769, 3863, 3911, 4211, 4373, 4447, 4481, 4567, 4871
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes p such that at least one of 2*p1 and 2*p+1 is prime, and at least one of 4*p1 and 4*p+1 is prime.
Primes p such that either 2*p1 and 4*p+1 are prime, or 2*p+1 and 4*p1 are prime.
Primes p such that 4*p is in A333197.


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

a(3) = 5 is a member because 5, 2*5+1=11 and 4*51=19 are primes.


MAPLE

filter:= proc(t) isprime(t) and (isprime(2*t+1) or isprime(2*t1)) and (isprime(4*t+1) or isprime(4*t1)) end proc:
select(filter, [2, seq(i, i=3..10000, 2)]);


MATHEMATICA

Select[Prime[Range[700]], AnyTrue[2#+{1, 1}, PrimeQ]&&AnyTrue[4#+{1, 1}, PrimeQ] &] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 17 2021 *)


CROSSREFS

Cf. A120628, A333197.
Sequence in context: A067933 A005234 A254225 * A140561 A140553 A195337
Adjacent sequences: A334023 A334024 A334025 * A334027 A334028 A334029


KEYWORD

nonn


AUTHOR

Robert Israel, Apr 12 2020


STATUS

approved



